Direct Asymmetric α-Alkylation of Phenylalanine Derivatives Using No External Chiral Sources

Takeo Kawabata, Thomas Wirth, Kiyoshi Yahiro, Hideo Suzuki, and Kaoru Fuji*

Institute for Chemical Research
Kyoto University, Uji, Kyoto 611, Japan
Received February 2, 1994
Asymmetric synthesis of α-substituted α-amino acids has attracted considerable attention because of the biological and chemical importance of these compounds. ${ }^{1}$ One of the most efficient methods for their synthesis has been via enolate chemistry utilizing chiral auxiliaries. ${ }^{1,2}$ However, it would be even more efficient if direct α-alkylation of the enolates generated from optically active α-amino acids could proceed enantioselectively without using any external chiral source. This has not been possible due to the loss of chirality at the α-carbon of α-amino acids in the corresponding enolates due to their achiral nature. In this communication, we describe a solution to this problem. Enolates generated from optically active α-amino acids are not always achiral, according to the concept of memory of chirality, which we recently proposed. ${ }^{3}$ In searching for conditions under which enolates are chiral, we discovered that optically active N-methyl- N-Boc-phenylalanine derivatives can undergo direct asymmetric α-alkylation with ee's as high as 88% without the addition of any external chiral source. ${ }^{4-6}$
To explore the asymmetric α-alkylation reaction, several ($(\$$)phenylalanine methyl esters 1 carrying functionalities on nitrogen were prepared, since we expected that these functionalities would play a crucial role in the asymmetric induction. The results of α-methylation of optically active 1 are summarized in Table 1.

Compounds 1d-f bearing an alkoxycarbonyl group on the nitrogen were methylated with significant asymmetric induction. After obtaining the results in Table 1, we chose N-Bocphenylalanine ethyl ester 3^{7} for further optimization of the asymmetric alkylation. The preparation of 3 ($>96 \%$ ee) was accomplished through esterification of L-phenylalanine ($\mathrm{SOCl}_{2}-$ EtOH) and tert-butoxycarbonylation ($\left.(\mathrm{Boc})_{2} \mathrm{O}, \mathrm{EtN}^{i} \mathrm{Pr}_{2}\right)$, followed by N -methylation ($\mathrm{Ag}_{2} \mathrm{O}-\mathrm{MeI}$). Treatment of 3 with a variety of bases in THF followed by methyl iodide afforded 5 , whose ee was determined as its N-benzoyl derivative 6 (Table

[^0]Table 1. α-Methylation of 1^{a}

compd	R^{1}	R^{2}	base	product	yield, \%	\% ee ${ }^{\text {b }}$
1a	Me	$\mathrm{CH}_{2} \mathrm{Ph}$	LDA	2a	45	$\sim 0^{c}$
1b	Me	CHO	LHMDS ${ }^{\text {d }}$	2b	66	~ 0
1c	Me	COPh	LDA	2c	50	12
1d	Me	$\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	LHMDS ${ }^{\text {e }}$	2d	40^{f}	26
1e	Me	$\mathrm{CO}_{2} \mathrm{Ad}^{8}$	LHMDS	2 e	38	35
1 f	Me	$\mathrm{CO}_{2}{ }^{\text {² }} \mathrm{Bu}$	LHMDS	$2 f$	30^{\prime}	36
1g	H	$\mathrm{CO}_{2}{ }^{\text { }} \mathrm{Bu}$	$L^{\text {LDA }}{ }^{h}$	2g	57	~ 0

${ }^{a}$ Substrate 1 of $>84 \%$ ee was treated with the base (1.1-1.8 equiv) at $-78^{\circ} \mathrm{C}$ for $30-60 \mathrm{~min}$ followed by methyl iodide at $-78^{\circ} \mathrm{C}$ to room temperature. Reactions were run in THF unless otherwise indicated. ${ }^{b}$ Ee was determined by HPLC analysis using Daicel CHIRALCEL OD (5\% ${ }^{i} \mathrm{PrOH}$-hexane) after conversion to 2 c unless otherwise indicated. ${ }^{c}$ Determined on 2a using Daicel CHIRALCEL OJ (1% ' PrOH -hexane). ${ }^{d}$ Lithium hexamethyldisilazide. ${ }^{e}$ Run in THF-DMF (10:1). ${ }^{f}$ Overall yield of 2c. ${ }^{8}$ 1-Adamantyl ester. ${ }^{h}$ The amount of base used was 2.4 equiv.

Table 2. Asymmetric α-Methylation of 3^{a}

		equiv of base	yield of $\mathbf{5 , \%} \%$	ee of $\mathbf{6},{ }^{b} \%$	recovery of $\mathbf{3}, \%$	ee of recovered $\mathbf{3},{ }^{c} \%$
1	LTMP	1.1	38	$79(S)$	23	87
2	LDA	1.2	57	$22(S)$	25	d
3	LHMDS	1.2	0		d	d
4	KHMDS	1.2	79	$20(R)$	0	
5	LTMP	1.0	40	$82(S)$	36	92
6	LTMP	1.5	42	$77(S)$	17	73
7	LTMP	2.0	42	$73(S)$	13	48
8	LTMP	4.0	36	$66(S)$	13	54
9	LTMP	6.0	37	$55(S)$	22	48

${ }^{a} 3$ (98\% ee) was treated with the base in THF at $-78{ }^{\circ} \mathrm{C}$ for 15 min followed by methyl iodide at $-78{ }^{\circ} \mathrm{C}$ for $4 \mathrm{~h} .{ }^{b}$ Determined by HPLC analysis using Daicel CHIRALPAK AS ($3 \% \mathrm{EtOH}$-hexane). The letter in the parentheses indicates the absolute configuration. ${ }^{c}$ The absolute configuration was S in each entry. Ee was determined by HPLC analysis using Daicel CHIRALPAK AS (3\% EtOH-hexane). ${ }^{d}$ Not determined. ${ }^{e}$ This result was in sharp contrast to that from 1 (Table 1, 1f). Reproducibility of the results was confirmed by repeated experiments.
2). Among the bases screened, lithium 2,2,6,6-tetramethylpiperidide (LTMP) proved to be the most effective for the asymmetric induction (entries 1-4). Asymmetric methylation proceeded with retention of configuration when LTMP or lithium diisopropylamide (LDA) was employed, while inversion of configuration was observed with potassium hexamethyldisilazide (KHMDS). The absolute configuration of 5 was determined by chemical correlation with 7. ${ }^{8}$ The degree of asymmetric induction depended on the amount of LTMP employed (entries 5-9). The best results (82% ee, 40% yield) were obtained when 1.0 equiv of LTMP was employed. Increasing the amount of base decreased the efficiency of the asymmetric induction without affecting the yield of 5 . Deuteriation of the enolate generated from 3 and 1.1 equiv of LTMP was carried out by treatment with $\mathrm{D}_{2} \mathrm{O}$. Recovered 3 (76% yield) contained 51% deuterium and had 76% ee with the S configuration. If all of the enolate was trapped with deuterium, ${ }^{9}$ deuteration would proceed with retention of configuration in 55% ee. Enolate formation was estimated to be complete ${ }^{10}$ in entries 7-9 since

[^1] anionic species when 1.1 equiv of LTMP was employed at $-78^{\circ} \mathrm{C}$.

Chart 1

the ee of recovered 3 was $\sim 50 \%$, whereas enolate formation in entries 5 and 6 was found to be incomplete. When the extent of enolate formation was low, a considerable amount of starting material was recovered (entry 5). When it was high, on the other hand, formation of side products increased. As a result, α-methylation of 3 proceeded with $\sim 40 \%$ yield irrespective of the extent of enolate formation.

Asymmetric α-allylation of $\mathbf{3}$ afforded 8 of 88% ee (15% yield, 62% recovery of 3) when 3 was treated with LTMP (1.0 equiv) and then with allyl bromide at $-78{ }^{\circ} \mathrm{C}$.

5 : $\mathrm{P}=\mathrm{CO}_{2}{ }^{1} \mathrm{Bu}$

$4: R={ }^{n} \mathrm{Bu}$
6 : $\mathrm{R}=\mathrm{COPh}$

8

13

14

Mechanistic aspects of the present asymmetric induction were investigated. Shown in Chart 1 are plausible intermediates: (A) mixed aggregates of the achiral enolate with the undeprotonated optically active starting material, (B) a configurationally stable carbanion stabilized by the adjacent N-Boc group, ${ }^{11}$ (C) an enolate with chiral nitrogen strongly coordinated with lithium, and (D) an enolate with $\mathrm{C}-\mathrm{N}$ chiral axis in which the steric bulk of the OLi group is increased by coordination with the amine originating from LTMP. To estimate the feasibility of A, crossover experiments between 3 and the butyl ester 4^{12} were done. A $1: 1$ mixture of $3(96 \%$ ee) and racemic 4 was treated with LTMP (1.0 equiv to the total amount of 3 and 4) at -78 ${ }^{\circ} \mathrm{C}$ followed by addition of methyl iodide at the same tempera-

[^2]ture to afford optically active 5 (74% ee, 26% yield) and racemic 9 (30% yield). The same treatment of a $1: 1$ mixture of racemic 3 and optically active 4 (96% ee) afforded racemic 5 (17% yield) and optically active 9 (71% ee, 24% yield). The optical purity of 5 and 9 was determined by HPLC analysis of the N-benzoyl derivatives, 6 and 10, respectively. These observations clearly indicate that \mathbf{A} does not make a significant contribution to the asymmetric induction. ${ }^{13}$

The anionic species generated from 3 and LTMP can be expected to contain some chiral information. To examine the structure of the anionic species, we carried out a ${ }^{13} \mathrm{C}$-NMR study of $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$ phenylalanine derivative 11 (racemic) prepared from $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$ glycine according to the reported procedure. ${ }^{14} \mathrm{Ra}$ cemic 11 was treated with [${ }^{7} \mathrm{Li}$]LTMP (1.7 equiv) in d_{8}-THF at $-78^{\circ} \mathrm{C}$, and the mixture was immediately transferred to an NMR tube at that temperature. Although the spectrum measured at $-78^{\circ} \mathrm{C}$ gave complicated and uninterpretable signals, raising the temperature of the solution to $20^{\circ} \mathrm{C}$ induced a complete change in the spectrum, in which two doublets now appeared at $\delta 159.9(J=115 \mathrm{~Hz})$ and $86.4(J=115 \mathrm{~Hz})$. These signals could be assigned to a normal enolate structure 12. ${ }^{15}$ Recooling the enolate solution to $-78^{\circ} \mathrm{C}$ did not lead to significant changes in the spectrum, the major signals of $\mathbf{1 2}$ remaining unchanged. Next, we investigated the effects of the observed structural changes caused by temperature variation on the asymmetric α-methylation of 3. Racemic 5 was obtained in 26% yield when 3 (96% ee) was treated with LTMP (1.0 equiv) at $-78^{\circ} \mathrm{C}$ for 15 min and then at $20^{\circ} \mathrm{C}$ for 45 min followed by methyl iodide at $-78{ }^{\circ} \mathrm{C} .{ }^{16}$ Thus, we concluded that the initially formed anionic species at $-78{ }^{\circ} \mathrm{C}$ could memorize the original chiral information, while the achiral enolate 12, formed after the temperature was raised, neither possessed chiral information nor could recall it even when recooled to $-78^{\circ} \mathrm{C}$. We propose \mathbf{B} as the initial anionic species, although involvement of aggregates of \mathbf{C} or \mathbf{D} cannot be excluded at the present stage. Results from the α-methylation of 13 also support B. (R)-Phenylglycine derivative 13 (52% ee) gave 14 as a racemate (57% yield) under the standard conditions. The anionic species generated from 13 is expected to possess a normal enolate structure rather than a carbon-lithium bond due to the presence of a phenyl group directly attached to the asymmetric α-carbon. ${ }^{17}$

In conclusion, we have developed a conceptually novel method for asymmetric α-alkylation of α-amino acid derivatives in which no external chiral sources are employed. Studies directed toward structure determination of the intermediary anionic species generated from 3 and LTMP at $-78{ }^{\circ} \mathrm{C}$ are currently under way using ${ }^{13} \mathrm{C}$-, ${ }^{15} \mathrm{~N}$-, and ${ }^{6} \mathrm{Li}-\mathrm{NMR}$ measurements.

Supplementary Material Available: Spectral data for 1f, 2f, 3-6, 8-10, and 14 and synthetic procedures for 3-6 (5 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering informatin.
(13) The possibility of accidental enantiomeric enrichment of 5 and/or 6 during the purification step was excluded; the ee of 6 was constant in entry 7 of Table 2 whether the purification step was included or not: Diter, P.; Taudien, S.; Samuel, O.; Kagan, H. B. J. Org. Chem. 1994, 59, 370. (14) De Nicola, A.; Einhorn, J.; Luche, J.-L. Tetrahedron Lett. 1992, 33, 6461 .
(15) For recent studies of ${ }^{13} \mathrm{C}$-NMR spectra of lithium enolates, see: Kim, Y.-J.; Bernstein, M. P.; Galiano Roth, A. S.; Romesberg, F. E.; Williard, P. G.; Fuller, D. J.; Harrison, A. T.; Collum, D. B. J. Org. Chem. 1991, 56, P. G.;
4435.
(16) Production of the racemate is not due to the prolonged deprotonation time since treatment of 3 with LTMP (1.0 equiv) at $-78^{\circ} \mathrm{C}$ for 60 min followed by methyl iodide afforded 5 of 81% ee.
(17) The configurational stability of a carbanion at the benzylic position is known to be relatively low, $17 \mathrm{a}-\mathrm{c}$ although an exception has been reported: ${ }_{17 \mathrm{~d}}$ (a) Cram, D. J.; Kingsbury, C. A.; Rickborn, B. J. Am. Chem. Soc. 1961, 83, 3688. (b) Meyers, A. I.; Guiles, J.; Warmus, J. S.; Gonzalez, M. A. Tetrahedron Lett. 1991, 32, 5505 . (c) Beak, P.; Du, H. J. Am. .Chem. Soc. 1993, 115, 2516. (d) Hoppe, D.; Carstens, A.; Krämer, T. Angew. Chem., Int. Ed. Engl. 1990, 29, 1424.

[^0]: (1) For example, see: (a) Seebach, D.; Boes, M.; Naef, R.; Schweizer, W. B. J. Am. Chem. Soc. 1983, 105, 5390 . (b) Schöllkopf U. Tetrahedron 1983, 39, 2085.
 (2) Recently, a new type of chiral auxiliary for α-amino acid synthesis was developed based on asymmetric transformation of oxazaborolidinones; see: Vedejs, E.; Fields, S. C.; Schrimpf, M. R. J. Am. Chem. Soc. 1993, 115, 11612.
 (3) Kawabata, T.; Yahiro, K.; Fuji, K. J. Am. Chem. Soc. 1991, 113, 9694.
 (4) Braña has reported that α-methylation of an L-tryptophan derivative furnished optically active product. ${ }^{4 a}$ The reported optical rotation of the product, $[\alpha]^{30} \mathrm{D}-3.8^{\circ}\left(\mathrm{CHCl}_{3}\right)$, corresponds to $c a .60 \%$ ee based on the reported rotation of the almost optically pure compound ($>95 \%$ ee). ${ }^{4 b}$ However, re-examination of this unusual reaction by us and by Schöllkopf et al. ${ }^{4 \mathrm{~b}}$ gave totally racemized product; see: (a) Braña, M. F.; Garrido, M.; López, M. L.; Sanz, A. M. J. Heterocycl. Chem. 1980, 17, 829. (b) Schöllkopf, U.; Lonsky, R.; Lehr, P. Liebigs Ann. Chem. 1985, 413.
 (5) It is reported that α-alkylation of an aspartic acid derivative proceeded without complete racemization; see: Seebach, D.; Wasmuth, D. Angew. Chem., Int. Ed. Engl. 1981, 20, 971.
 (6) Intramolecular cyclization of methyl (4R)-3-(2-diazo-3-oxobutanoyl)-thiazolidine-4-carboxylate has been reported to proceed with retention of configuration via a planar ester enolate possessing axial chirality; see: Beagley, B.; Betts, M. J.; Pritchard, R. G.; Schofield, A.; Stoodley, R. J.; Vohra, S. J. Chem. Soc., Chem. Commun 1991, 924; J. Chem. Soc., Perkin Trans. 1 1993, 1761.
 (7) The ethyl ester derivative 3 rather than the methyl ester $\mathbf{1}$ was selected as substrate because the former often affords better yields in α-methylation reactions than the latter, especially when LTMP is employed as a base.

[^1]: (8) Corey, E. J.; McCaully, R J.; Sachdev. H. S. J. Am. Chem. Soc. 1970, 92, 2476.
 (9) $\mathrm{A}{ }^{13} \mathrm{C}$-NMR study using the ${ }^{13} \mathrm{C}_{2},{ }^{15} \mathrm{~N}$-labeled derivative of 3 also indicated that only $50-60 \%$ of the starting material was converted to the

[^2]: (10) This conclusion is consistent with the results from a ${ }^{13} \mathrm{C}-\mathrm{NMR}$ study which showed that more than 90% of the starting material 11 was converted to the anionic species on treatment with 1.7 equiv of LTMP at $-78^{\circ} \mathrm{C}$.
 (11) Configurationally stable carbanions stabilized by the adjacent N-Boc group have been reported. ${ }^{11 a, b}$ Also, asymmetric synthesis via dipolestabilized carbanion intermediates has been developed: ${ }^{11 c-e}$ (a) Kerrick, S. T.; Beak, P. J. Am. Chem. Soc. 1991, 113, 9708 . (b) Chong, J. M.; Park, S. B. J. Org. Chem. 1992, 57, 2220. (c) Meyers, A. I.; Fuentes, L. M. J. Am. Chem. Soc. 1983, 105, 117. (d) Hoppe, D.; Krämer, T. Angew. Chem., Int. Ed. Engl. 1986, 25, 160. (e) Pearson, W. H.; Lindbeck, A. C. J. Am. Chem. Soc. 1991, 113, 8546.
 (12) The reactivity of 4 in asymmetric α-methylation was similar to that of 3. Thus, treatment of $4(96 \%$ ee) with LTMP (1.0 equiv) followed by methyl iodide at $-78{ }^{\circ} \mathrm{C}$ afforded (S) -9 of 66% ee.

